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a Laboratoire de Mécanique de Lille, UMR CNRS 8107, USTL, bd. Paul Langevin, 59655 Villeneuve d’Ascq Cedex, France
b Laboratoire TREFLE (TRansferts Ecoulements FLuides Energétique) UMR CNRS 8508, ENSAM, Esplanade des Arts et Métiers,

F-33405 Talence Cedex, France

Received 30 May 2006; received in revised form 21 July 2006
Available online 28 November 2006
Abstract

We consider a stability analysis of a fluid in a porous layer heated from below including the effects of a superposed through-flow,
porous inertia and the lateral confinement of the medium with respect to extended and localized perturbations. It is found that extended
perturbations promote the appearance of down-stream moving transverse modes (T modes) provided that the Péclet number Pe remains
below a critical value Pe*. We showed that the T modes are replaced by stationary longitudinal rolls (L rolls) if Pe > Pe*. On the other
hand when localized perturbations are considered, a spatial stability analysis is performed to determine regions of convective and abso-
lute instability for T modes as well as for L rolls in the filtration Rayleigh–Péclet plane. We found that while the lateral aspect ratio has a
strong influence on the convective/absolute nature of secondary flows, the main effect of porous inertia is to delay the transition to the
absolute instability. Quantitative comparisons between our finding and experimental results published by one of us (M.C.) are presented.
As far as the solid thermal conductivity is similar to that of the fluid, it is found that the experimentally observed transition between the T

modes and L rolls occurs at the border between convective and absolute instability. Moreover it has also been found that the measured
and the theoretically predicted wavelengths of T modes as well as their period of oscillation are in good agreement for various combi-
nations of Ra and Pe numbers. The agreement between theory and experiment becomes less satisfactory when the matrix is much more
conductive than the fluid. Therefore the assumption of local thermal equilibrium between solid and fluid becomes debatable.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The stability of convection in a fluid medium heated
from below and cooled from above with a super-imposed
through-flow have been extensively investigated in the past
two decades. In this so called Poiseuille–Rayleigh–Bénard
(PRB) problem various vortex flow structures such as
steady longitudinal rolls (L rolls) with their rotation axes
parallel to the through-flow direction, down-stream mov-
ing transverse rolls (T rolls) with their rotation axes
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perpendicular to the through-flow direction, mixed L rolls
and T rolls, and irregular cells have been reported in the lit-
erature. To delineate the vortex patterns in the medium,
detailed experimental flow visualizations and Laser Dopp-
ler Anemometry measurements [1–3] were conducted cov-
ering wide ranges of the governing parameters. On the
other hand among the most comprehensive and recent lin-
ear stability analysis of the PRB problem, let us cite the
study of Nicolas et al. [4] and the work of Carrière and
Monkewitz [5]. We urge the reader interested in learning
more about the PRB problem to consult an exhaustive
bibliographical review on this subject which has been
presented recently by Nicolas [6]. This excellent review
covers the period 1920–2001 and counts 154 references.
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Nomenclature

a lateral aspect ratio
c specific heat
C dimensionless form-drag constant
F Forchheimer number
g gravity acceleration
H height of layer
k dimensionless wave number in the main flow

direction
k�c critical wave number at the double bifurcation

point
kstg effective stagnant thermal conductivity
K permeability
m number of rolls
p small perturbation of the pressure
P pressure
Pe Péclet number
Pe* Péclet number at the double bifurcation point
Ra Darcy-Rayleigh number
Ra* Darcy-Rayleigh number at the double bifurca-

tion point
ReK Reynolds number based on the permeability of

the porous medium
Re�K critical Reynolds number at the double bifurca-

tion point
t time
T dimensionless temperature
T0, T1 temperature of the heated and the cooled sur-

faces, respectively
T* dimensional period of transverse modes oscilla-

tions

u, v, w velocity components
U dimensional average filtration velocity
Vu phase velocity
x, y, z cartesian coordinates

Greek symbols

a volumetric coefficient of thermal expansion
h perturbation of temperature
k* dimensional wavelength
l dynamic viscosity
m kinematic viscosity
q density
U porosity
x dimensionless frequency

Superscripts

A value of a quantity at the threshold of absolute
instability

3D transverse modes
k longitudinal rolls

Subscripts

b basic solution
c critical quantity
exp experimental quantity
f fluid
i imaginary part
r real part
s solid
th theoretical quantity
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For porous media, which are of major importance in
many natural and practical applications (see for example
the book of Nield and Bejan [7]), the mixed convection
problem has received very much less attention in the pub-
lished literature. Moreover, compared with existing analyt-
ical and numerical works, experimental results are very
limited. Almost thirty years ago, Combarnous [8–10] exam-
ined experimentally the secondary flow configurations of
convection in a rectangular duct filled with a saturated por-
ous medium through which an axial flow is maintained.
The temperature recordings indicated that these configura-
tions depend on the filtration Rayleigh number Ra and the
Péclet number Pe which measures the strength of the
through-flow. By using various combinations of solid par-
ticles and fluids, Combarnous obtained the flow regime
map for different vortex patterns observed in experiments.
Experimental evidence was given that the presence of the
through-flow has no influence, neither for conduction
(Ra < 40) nor for fluctuating flow (Ra > 260). For Ra

between 40 and 260, depending on Pe, two main types of
convective flow were observed. For low Pe the vortex flow
patterns which are termed T modes in what follows are
down-stream moving pure T rolls or oblique rolls. While
for higher values of Pe the moving T modes are replaced
by stationary L rolls. Some temperature recordings have
shown that there are hysteresis effects associated with these
two types of secondary flows, while other measurements
have also demonstrated the coexistence of L rolls and T

modes, albeit in different parts of the medium. Concerning
the mean heat transfer, these experimental investigations
revealed that the existence of a horizontal through-flow
does not appreciably modify the vertical mean heat transfer
compared with natural convection.

From a theoretical point of view, Prats [11] analyzed the
linear stability of two-dimensional mixed convection in
porous media of infinite lateral extension. Under the Darcy
model, he showed that the critical values of the onset of
mixed convection are the same as that corresponding to
the onset of Horton–Rogers–Lapwood convection in an
initially, quiescent fluid layer heated from below. Rees
[12] extended this analysis by taking into account inertial
effects as modelled by Forchheimer’s correction to Darcy’s
law. He found that under both effects of inertia and the
through-flow, L rolls are favored whatever the values of
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Pe. On the other hand, by using the propagation theory in
a recent paper, Chung et al. [13] obtained the critical posi-
tion xc to mark onset of L rolls. Although dominant L rolls
were clearly evidenced in [12] and some of their quantita-
tive characteristics were obtained in [13], these interesting
theoretical predictions cannot be used to understand the
experimentally observed moving T modes in [8–10]. As
for the numerical point of view, Dufour and Néel [14]
describe the two-dimensional convective configurations
by focusing on the moderate values of the through-flow
which correspond to the Darcian case. They computed
the global frequency of oscillations, the wavelength and
the phase velocity of T rolls. Recently the work of Rees
has itself been extended by Delache et al. [15] to include
the effects of the lateral aspect ratio of the medium in addi-
tion to the effects of the porous inertia. The pattern selec-
tion predicted by this analysis for a finite aspect ratio a is
ruled by the modified Reynolds number ReK based on
the permeability of the medium. Precisely, it is found that
there exists a critical Reynolds number Re�K at which the
critical Rayleigh numbers Ra3D

c , for the onset of moving
T modes, and Rakc , for the onset of stationary L rolls,
are equal (Ra3D

c ¼ Rakc ). For ReK < Re�K the T modes
become unstable first at Ra3D

c . While for Re > Re�K the most
unstable disturbances are L rolls (Rakc < Ra3D

c ). Although
these predictions seem to agree qualitatively with experi-
mental results, a close inspection carried out in the present
paper showed a profound disagreement. We concluded
that a temporal description in the linear stability analysis
is not adequate to describe such flows. Mixed flows convec-
tion belongs indeed to the open flow class such as jets and
boundary layers where fluid particles continuously enter
and leave the experimental medium. Therefore, the neces-
sity of the distinction between the two types of instability,
absolute or convective, is needed. In the convectively
unstable regime a spatially localized perturbation is con-
vected downstream and eventually is blown out of the sys-
tem. On the contrary, in the absolutely unstable regime,
such perturbations expand in the downstream as well as
in the upstream direction. The behavior of the system is
thus qualitatively very different in both regimes. In the con-
vectively unstable regime, noise is spatially amplified and
gives rise to noise-sustained structures. While, in the abso-
lutely unstable regime, structures are intrinsically sustained
by the deterministic dynamics.

The aim of this study is threefold. Firstly, we perform a
spatio-temporal stability analysis to discriminate between
the convective and absolute instability of the basic flow
with respect to oscillatory three-dimensional structures as
well as to longitudinal rolls. Special emphasis is given to
the influence of inertia and the lateral aspect ratio of the
porous medium on the instability characteristics. Sec-
ondly, the theoretical predictions are compared to experi-
ments [8–10] conducted with various combinations of solid
matrix and fluids, and hence with different ratios of the
fluid thermal conductivity to the solid thermal conductiv-
ity. The predicted results are then used to verify the valid-
ity of our model based on the assumption of local thermal
equilibrium between solid matrix and fluid. Finally each
time possible, similarities and differences between mixed
convection in porous media and in fluid media are
presented.

The full nonlinear stability analysis is out of the scope of
this paper.

2. Problem formulation and dispersion relation

The configuration of interest is an isotropic and homo-
geneous porous layer of infinite horizontal extent of rectan-
gular cross section with thickness H and width aH

saturated by a fluid. We suppose that the layer is confined
by impermeable and perfectly heat conducting horizontal
boundaries. The lower and upper boundaries are at uni-
form temperatures T0 and T1(<T0). The lateral boundaries
are assumed impermeable and perfectly heat insulating.
Furthermore, we consider that a through-flow is driven
by a pressure gradient in the x-direction. To simplify
the analysis, the following conventional assumptions are
applied: (1) the fluid and the porous solid matrix are in
local thermal equilibrium; (2) the Forchheimer correction
to Darcy’s law is used for high through-flow rates or high
permeability in the porous medium; and (3) the Boussinesq
approximation is employed. We choose H, H2(qc)/kstg,
T0 � T1, kstg/(H(qc)f) and kstgl/(K(qc)f) as references for
length, time, temperature, filtration velocity and pressure.
Here, kstg, (qc), (qc)f, K and l are, respectively, the effective
stagnant thermal conductivity, the overall heat capacity of
the medium per unit volume, the heat capacity per unit vol-
ume of the fluid alone, the permeability of the medium and
the viscosity of the fluid. The following set of governing
equations is obtained:

~r � ~V ¼ 0

~V þ F k~V k~V ¼ �~rP þ RaT~ez

oT=ot ¼ �~V � ~rT þ ~r2T

ð1Þ

with the following boundary conditions:

~V �~ez ¼ 0 at z ¼ 0; 1; ~V �~ey ¼ 0 at y ¼ 0; a ð2Þ
T ¼ 1 at z ¼ 0; T ¼ 0 at z ¼ 1; oT=oy ¼ 0 at y ¼ 0; a

ð3Þ

and the imposed through-flowZ a

0

Z 1

0

~V �~ex dy dz ¼ aPe ð4Þ

P ; ~V ; T ; ~ez are the pressure, the filtration velocity, the
temperature and the vertical upwards unit vector respec-
tively. The system is characterized by four dimension-
less control parameters. The filtration Rayleigh number
Ra ¼ KgaHðT 0 � T 1ÞðqcÞf=kstgm, the Péclet number Pe =

UH(qc)f/kstg, the number F ¼ C K
1
2kstg=HmðqcÞf

h i
which

can be termed the Forchheimer number and the lateral
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aspect ratio a. U, g, m, a and C are the average filtration
velocity imposed at the entrance of the channel, the gravi-
tational acceleration, the kinematic viscosity, the thermal
expansion coefficient and a dimensionless form-drag con-
stant, respectively.

A basic solution of the problem (1)–(4) is a combination
of a vertical thermal stratification and a homogeneous flow
in the~ex direction

~V b ¼ Pe �~ex; T b ¼ 1� z and

P b ¼ Raðz� z2=2Þ � Peð1þ ReKÞx ð5Þ

where ReK ¼ FPe ¼ c UK
1
2=m

� �
is a Reynolds number based

on the permeability of the medium. The Darcy model is
recovered if ReK = 0 (i.e. F = 0).

To investigate the stability of the basic solution (5),
infinitesimal three-dimensional general perturbations are
super-imposed onto the basic solution:

ð~V ;T ;PÞ ¼ ð~V bþ v!ðx;y; z; tÞ;T bþ hðx;y; z; tÞ;P bþ pðx;y; z; tÞÞ
ð6Þ

Substituting Eq. (6) into (1), subtracting the basic flow
quantities and linearizing the equations by neglecting terms
higher in order than the first one in the disturbance quan-
tities, one can obtain the following equations for the
disturbances:

ou=oxþ ov=oy þ ow=oz ¼ 0

uð1þ 2ReKÞ þ op=ox ¼ 0

vð1þ ReKÞ þ op=oy ¼ 0

wð1þ ReKÞ þ op=oz� Rah ¼ 0

oh=ot � ~r2h� wþ Peoh=ox ¼ 0

ð7Þ

Next, the three-dimensional disturbance quantities
respecting the boundary conditions (2) and (3) are
expressed as

u

v

w

h

p

0
BBBBBB@

1
CCCCCCA ¼ eiðkx�xtÞ

u1 cos½pz� cos m
a py
� �

v1 cos½pz� sin m
a py
� �

w1 sin½pz� cos m
a py
� �

h1 sin½pz� cos m
a py
� �

p1 cos½pz� cos m
a py
� �

0
BBBBBB@

1
CCCCCCA ð8Þ

where k is the wave number in the direction of the main
flow, x is the frequency and the integer m is the number
of rolls in the spanwise direction. Note that we only
consider solution with one roll in the vertical direction be-
cause it can be shown that the basic flow is more unstable
vis-à-vis one roll than vis-à-vis multiple rolls in this
direction.

If we substitute (8) into (7) we obtain an algebraic sys-
tem with a nontrivial solution only if the problem is singu-
lar, which implies an explicit dispersion relation between
the dimensionless parameters of the problem
Dðx;k;m=a;Ra;Pe;ReKÞ
¼ �ixþ ikPeþ k2þ p2ð1þm2=a2Þ

� Ra
1þReK

k2ð1þReKÞ þ ðm2=a2Þp2ð1þ 2ReKÞ
p2ð1þm2=a2Þð1þ 2ReKÞ þ k2ð1þReKÞ

� �
¼ 0

ð9Þ

The following three sections are devoted to the stability
analysis. Each of them corresponds to a different nature of
the disturbance.

3. Temporal stability approach

Temporal stability analysis refers to the temporally
growing extended perturbation in the form of a spatially
homogeneous wave with a real wave number k. The tempo-
ral growth rate of unstable perturbations is given by the
imaginary part of the frequency x = xr + ixi. Therefore,
the neutral temporal stability curve is obtained for xi = 0
which selects dominant modes at the onset of convection.
This temporal stability approach has been considered by
Delache et al. in a published note [15], and has provided
quantitative information on the stability condition. Here,
we briefly recall the main results of [15] and report some
new and complementary findings.

We first study the stability of (5) against stationary L

rolls (i.e., k = 0 and xr = 0). For a given (finite) value of
a, we found that the threshold Rakc of L rolls

Rakc ¼ p2ða=mk þ mk=aÞ2ð1þ ReKÞ ð10Þ

is raised by porous inertia contrarily to the case of mixed
convection in a fluid medium. Indeed, the studies [4,5] of
PRB flows reported that Rakc is independent of Reynolds
number. The variations of Rakc= (1 + ReK) versus a are de-
picted in Fig. 1. We also indicate the number m of L rolls,
which depends on a. Notice that for integer values of a,
Rakc ¼ 4p2ð1þ ReKÞ and m = a. Otherwise the lateral con-

finement stabilizes the basic flow against the L rolls and
the maximum of Rakc decreases when a is increased and
tends to 4p2(1 + ReK) when lateral boundaries are pulled
to infinity, in agreement with [12]. We note that the stabiliz-
ing effect of lateral walls is more important in clear
fluids [4] than in porous media. This observation stems
from the fact that the values of the ratio ðRakcðaÞ�
Rakcða!1ÞÞ=Rakcða!1Þ, where RakcðaÞ is the threshold
with a finite a, are always larger in fluid media (see Fig. 7
of [4]) than in porous ones (Fig. 1).

Oscillatory three-dimensional instabilities (T modes) are
characterized by non-zero values of k, xr and m. The cor-
responding threshold Ra3D

c is given by

Ra3D
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ReKð1� m2

3D=a2Þ
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ReK

p� �2

p2 ð11Þ

with m3D being the largest integer m satisfying

m2=a2 < ð1þ ReKÞ=ð1þ 2ReKÞ 6 1 ð12Þ
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The oscillation frequency is xr = kcPe with the critical
wave-number kc defined as

k2
c ¼

p2 �ðm2
3D=a2Þð1þ2ReKÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ2ReKÞð1þReKð1�m2

3D=a2ÞÞ
ph i
1þReK

ð13Þ

From the comparison between Rakc and Ra3D
c , some con-

clusions may be drawn.
First, when a is not an integer and is larger than 1, it is

found that there exists a critical Reynolds number Re�K
below which the T modes propagating with a phase veloc-
ity equal to Pe become unstable first at Ra3D

c . While for
Re > Re�K the most unstable disturbances are L rolls
(Rakc < Ra3D

c ). A transition occurs between T modes and
L rolls at Re�K for which the critical Rayleigh numbers,
Ra3D

c and Rakc are equal (i.e. Ra3D
c ¼ Rakc ¼ Ra�). This
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Fig. 2. Critical threshold of both 3D oscillatory structures (s) and L rolls
(—) as a function of ReK for a = 1.9.
behavior is represented in Fig. 2. The dependence of Re�K
on the lateral aspect ratio is also displayed in Fig. 3. In
what follows, the point (Re�K;Ra�) will be termed a double
bifurcation point. Second, for infinite or integer values of a,
the lowest threshold corresponds to L rolls which then
dominate whatever the values of ReK.

Finally, we examined the way by which the predicted
transition from T modes to L rolls occurs at the double
bifurcation point. We evaluated the wave number k�c at this
point for different values of the aspect ratio a and found
that this transition may be smooth or abrupt depending
on a. As shown in Fig. 4, for a 2 �EðaÞ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 1Þ

p
� and

E(a) the entire part of a, we obtain mk ¼ m3D ¼ EðaÞ and
k�c ¼ 0. Therefore, we expect that the system may exhibit
a smooth transition from T modes to L rolls. On the con-
trary, for a 2 ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 1Þ

p
;EðaÞ þ 1½, we find m3D = E(a),

mk ¼ EðaÞ þ 1 and k�c 6¼ 0 implying that this transition is
abrupt. From the phenomenological standpoint, there is
0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7

k
* c

a

Fig. 4. Critical wave number k�c for which Ra3D
c ¼ Rakc versus a.
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a fairly close analogy between the abrupt or smooth tran-
sition described above and the transition predicted by Rees
and Postelnecu [17] in their analysis of a completely differ-
ent problem, namely the onset of convection in an inclined
anisotropic porous layer. They concluded that there is not
a straightforward exchange between T rolls and L rolls, but
rather the transition may be smooth or abrupt depending
on the anisotropy of the medium.

4. Spatial stability approach and transition to absolute
instability

4.1. 3D Oscillatory patterns

Comparing experimental measurements with the tempo-
ral stability predictions, we found a deep discrepancy (see
Section 6). We concluded that a temporal description in
the linear stability analysis is not adequate to describe
mixed convection flows. The spatial theory is then used:
in contrast to a temporal stability analysis, a forcing per-
turbation imposed at a specific location in the fluid, say
x = 0, is not allowed to grow in time (i.e. xi = 0), but it
can grow in space. Therefore k is a complex number:
k = kr + iki. Its real part kr represents the wave number;
the opposite of its imaginary part �ki represents the spatial
growth rate, and the real number x gives the frequency of
the wave. Hence unstable waves propagating in the
through-flow direction are such that �ki > 0.

The spatial branches for oscillatory three-dimensional
patterns are defined by

C ¼ fk 2 {;x 2 R=Dðk;x;Ra; Pe; F ;m=aÞ ¼ 0g ð14Þ
D(k,x,Ra,Pe,F,m/a) = 0 is the dispersion relation (9) which
we expand to obtain a fourth-degree polynomial of k. We
numerically solve it and obtain the four spatial branches
of (14) for different values of Ra and fixed values of Pe,
F and m/a. The four branches are plotted in the complex
k plane in Fig. 5(b)–(d), for different Ra. The spatial
branches corresponding to waves propagating in the
through-flow direction (i.e. x > 0) are denoted by k+. Sim-
ilarly, k� branches are associated to waves moving in the
upstream direction (i.e. x < 0). In order to discriminate be-
tween k+ and k� in the complex k plane, we proceed as it
follows. For Ra < Rac, the system is stable and all temporal
modes (i.e. k real and x complex) lie under the real k-axis
as it is shown by the circle line of Fig. 5(a), meaning that no
x real and k real is solution of the dispersion equation.
Therefore, spatial branches do not cross the real k-axis
(Fig. 5(b)) and lie on each side of it. As the basic state is
stable, any wave propagating downstream or upstream is
not allowed to grow spatially and must be damped. Thus
branches with ki > 0 (ki < 0) shall be associated to
k+(k�). When Ra exceeds slightly Rac, the basic flow is
destabilized and the temporal branch crosses over the real
k-axis as it is shown by the solid line of Fig. 5(a). Intersec-
tion of this temporal branch with xi = 0 gives a wave per-
taining to a spatial branch as well. Therefore k+ crosses the
real k-axis (Fig. 5(c)) and then the amplitude of the wave
packet corresponding to the selected frequency x will in-
crease downstream (�kþi > 0) and will decrease upstream
(�k�i < 0). Moreover, as it is shown in Fig. 5(e) and (a)
large band of frequencies may emerge in the medium which
imply that the system acts as a spatial amplifier of the inlet
perturbation. This is the main characteristic of the convec-
tive instability. As the Rayleigh number is increased, the
maximum spatial growth rate increases, and the peak of
the frequency spectrum becomes less broadened. Increasing
the Rayleigh number to a threshold, Ra = RaA, the spatial
growth rate presents a cusp point at the frequency x = xA

as it is illustrated in Fig. 5(f). Moreover, for this value of
the Rayleigh number, two branches emerge from the lower
and from the upper half-planes, pinch below the real wave-
vector axis at xA and create a saddle-point (Fig. 5(d)).
Owing to the symmetry (kr, ki, x) ? (�kr, ki, �x) of the
dispersion equation, the pinching process occurs symmetri-
cally with respect to kr = 0 axis. This is the so-called pinch-
ing condition, necessary and sufficient for the onset of the
absolute instability (see, for instance the review of Huerre
and Monkewitz [18]). It is important to note that at the
threshold of the absolute instability, no distinction can be
made between the two spatial branches k+ and k� which
coalesce at the saddle-point. For this reason, the response
of the system to an inlet forcing can not be defined imply-
ing that the flow behaves as a self-excited oscillator with
intrinsic dynamics. The values of the Rayleigh number,
the wave number and the frequency at the saddle point,
(RaA, kA, xA), for fixed values of m/a, Pe and F, are called
the absolute Rayleigh number, the absolute wave number
and the absolute frequency, respectively. In the following
we present results related to the border between convective
and absolute instability.

To investigate the roll orientation corresponding to the
highest absolute growth rate, we use the spatial stability
approach described above by considering general oscilla-
tory three-dimensional mode. For a = 6.9, that is the lateral
aspect ratio used in experiments [8–10] and according to
relation (12), the unstable modes correspond to values of
m ranging from 0 to 6. The dependence on the Péclet num-
ber of RaA is determined for different m. We found that RaA

raises with increasing m for all Pe numbers. Therefore, the
mode m = 0 is the first to be absolutely unstable and we
therefore conclude that the boundary of absolute instability
coincides with that of oscillatory pure transverse rolls. We
have checked that this pattern selection related to the bor-
der between convective and absolute instability remains
pertinent for any Forchheimer number F. Fig. 6 displays
the absolute threshold RaA versus Pe for the modes m = 0
and m = 6 with F = 0 (i.e. under the Darcy model). The
curves of the absolute threshold for the remaining unstable
modes with 1 6 m 6 5 lie between the depicted ones.

The influence of inertia on the boundary between con-
vective and absolute instability for pure transverse rolls is
investigated by varying the Forchheimer number F. It is
shown in Fig. 7(a) that RaA (m = 0) increases when F
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increases meaning that the basic flow is less absolutely
unstable with respect to T rolls when F is raised. Explaining
the physical reasons behind this phenomenon requires to
interpret this result in terms of the product, FPe = ReK

which represents the ratio of inertia to viscous terms. The
increase of ReK (i.e. the increase of inertia effects) is accom-
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panied by a stabilization of the flow. For example, if we
take Pe = 10 and change F from 0 to 0.01 and then to
0.1, the threshold of the absolute instability raises from
58 to 66 and to 142 respectively. We claim that these pre-
dictions, compared to experimental results in thin porous
layer and in high-porosity media where inertial effects are
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significant may be used to test the Forchheimer model as a
nonlinear correction to Darcy’s law.
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Some characteristics of T rolls in the boundary between
convective and absolute instability, namely the oscillation
frequency xA, the wave number kA

r and the phase velocity
V A

u ¼ xA=kA
r are expressed as a function of Pe for F = 0,

0.01 and 0.1 and are displayed in Fig. 7(b)–(d). The illustra-
tions indicate that inertia have weakly effects on the three
characteristics. Moreover, the phase velocity V A

u is almost
equal to Pe irrespective of F.
4.2. Longitudinal rolls

Before considering the influence of a finite lateral aspect
ratio a on the convective or absolute nature of the instabil-
ity for L rolls, it should be emphasized that the present
work, in the limit of infinite a, has close similarities with
previous studies published on the Poiseuille–Rayleigh–
Bénard (PRB) problem [5] and on mixed convection of bin-
ary mixtures in porous media [19,20]. In both problems, the
authors performed a spatio-temporal analysis by evaluat-
ing the asymptotic response to localized 3D perturbations.
As far as the width of the medium is assumed infinite, these
studies revealed that in the absolute instability region, the
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system selects pure travelling T rolls while the system
remains convectively unstable with respect to oblique T

modes as well as to L rolls for all non-zero through-flow
values. As pointed out in [5], the result that L rolls repre-
sent a convective instability for all non vanishing Reynolds
numbers in PRB problem is in contradiction with the pre-
diction of amplitude equations derived by Brand et al. [21],
Müller et al. [22] and Tveitereid and Müller [23], who
found that L rolls may experience a transition to absolute
instability in some parameter ranges. The authors of [5]
attributed this result to the fact that amplitude equations
were used outside their range of validity. Recently, in the
limit of very low Reynolds number, Carrière et al. [24]
rigorously derived an amplitude equation describing the
dynamics of any instability with arbitrary orientation in
PRB problem. The main result obtained from this ampli-
tude equation is that all instability modes (including L

rolls) are convectively unstable except pure T rolls in agree-
ment with [5]. In this subsection, we try to throw a new
light on this subject by considering the influence of the lat-
eral confinement of a porous medium on the nature of the
instability for L rolls.

One of the key differences between an infinite and a
finite lateral aspect ratio regarding the stability problem
lies in the property of the wave number in the y-direction.
In the case of an infinite extension the wave-number is
continuous. The presence of lateral walls selects discrete
values of the wave-number rather than continuous values.
Consequently in the former case we obtain a continu-
ous neutral stability curve, while in the later case the
spectrum of growth rates is discrete. In Section 3, we
found that the growth rate of L rolls vanishes if Rak

¼ p2ða=mþ m=aÞ2ð1þ ReKÞ. For a given (finite) value of
a, the threshold Rakc is obtained for a number of rolls mk
which minimizes Rak. The remaining modes with m 6¼ mk
are less unstable. Nevertheless in the following, we will
try to locate a possible transition from convective to abso-
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lute instability for the most unstable mk mode as well as for
the others m modes. To find possible saddle points we pur-
sued the same procedure as described above for oscillatory
three-dimensional patterns. For example, the pinching pro-
cess of spatial branches for varying Ra is illustrated in
Fig. 8(a) for a = 6.9 and m = 8. As may be seen from this
figure, the saddle point is located along the imaginary ki-
axis, meaning that the dominant mode is L rolls. We have
checked that this feature is also observed for different finite
a, including integer values of a. We did not find any similar
pinching process for infinite a or finite a with m < mk mean-
ing that in this case L rolls remain convectively unstable
whatever Péclet number. Fig. 8(b) displays in the (Pe,
Ra) plane the transition curve to absolute instability of L
rolls for a = 6.9 and different m satisfying m P mk. A
remarkable feature is that L rolls can be absolutely unsta-
ble only if the Péclet number Pe is less than a critical value
Pec(m) which increases with increasing m. As Pe exceeds
Pec(m) the threshold of the absolute instability tends to
infinity.

5. Instability characteristics in the absolutely unstable regime

The temporal stability analysis given above refers to the
case of extended perturbations and considers a complex
frequency, (x = xr + ixi), for known real wave number,
(ki = 0). On the other hand, a spatial stability analysis con-
siders the response of the system to a localized harmonic
forcing where the complex wave number, (k = kr + iki),
has to be found for known real frequency values, xi = 0.
The spatial stability analysis is not adequate if Ra exceeds
RaA. Therefore, the most general case in which the initial
impulse response at a fixed spatial location is evaluated
by considering both the complex frequency and the com-
plex wave number must be considered. For the sake of
brevity, we formally describe the method and state the
results here and the reader should consult reference [16]
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for technical details. The classical method consists to add
to the right-hand side of the system (7) a localized initial
impulse in (x, y, z) space for G = (u,v,w,p,h,)T (i.e. the
Green function). The problem can be solved using Fourier
transform in space and Laplace transform in time, defined
by:

bGðk;x; y; zÞ ¼ Z 1

�1

Z 1

0

Gðx; y; z; tÞ expðiðxt � kxÞÞdxdt

ð15Þ
By solving the problem in Fourier space and performing
the Laplace transform by residue theorem, the solution
G(x,y,z,t) may be written formally as

Gðx; y; z; tÞ ¼ � i
2p

Z 1

�1

Sðk;x; y; zÞ
oD
ox ðk;xÞ

expð�iðxt � kxÞÞdk

ð16Þ
Here S(k,x,y,z) depends on the shape of localized initial
impulse.

The asymptotic behavior of the integral (16) can be
obtained by applying the method of the steepest descent
[18]. The dominant part of the integrand arises in the
region of the complex saddle point ks defined by

dx=dk ¼ x=t ð17Þ
In the unstable regime, localized perturbations expand

in the form of wave packets with the growth rate
r = xi � kix/t. Besides the temporal growth rate xi, r is
also composed of a spatial contribution term where the
propagation velocity U = x/t of the wave packet plays a
key role.

In case of temporal instability analysis, the system is
unstable provided that xi > 0 for any real wave number,
and the most unstable wave number kc is defined by dxi/
dk = 0. The ray direction along which the maximum
growth rate is reached is defined by (dxr/dk)c = (x/t)max.
1

1.2

1.4

1.6

1.8

2

40 60 80 100 120 140 160 180 200

λ

Ra

a

Fig. 9. Characteristics of T rolls in the absolutely unstable region: (a) wavelen
period TA at the border between convective and absolute instability (—) are r
(� � �) and Ra = 120 (- � -).
The second parameter domain of special interest con-
cerning spatio-temporal instabilities, is that corresponding
to a maximum growth rate for a given x as t ?1 that is
x/t ? 0. The complex wave number k0 associated with this
instability satisfies the equation dx/dk = 0. Thus, a pertur-
bation at fixed x grows with a rate xi(k0). When xi(k0) is
positive, the system is said to be absolutely unstable and
localized perturbations grow in situ and also expand in
space. If xi(k0) is negative, xi(kc) being positive, the system
is said to be convectively unstable meaning that any local-
ized impulse is convected away so that instabilities cannot
globally grow.

In order to determine the main characteristics beyond
the threshold of absolute instability (i.e. xi(k0) > 0), the fol-
lowing system is solved by means of a Newton–Raphson
algorithm

Dðx; k0;m=a;Ra; Pe; F Þ ¼ 0 and dx=dk ¼ 0 ð18Þ

The first expression in (18) is the dispersion relation, and
the second equation expresses the existence of a saddle
point in the complex wave number plane, i.e. the nullity
of the complex group velocity.

An interesting issue is the evolution of the wavelength,
the period of oscillations and the phase velocity of the most
absolutely unstable pattern, namely the oscillatory pure
transverse rolls, with varying Ra and Pe. Fig. 9(a) demon-
strates that the wavelength k decreases with Ra for fixed
Pe. The same behavior was predicted in simulations of
the governing equations of mixed convection in clear fluids
by Nicolas et al. [25] for Prandtl number Pr = 6.4 and by
Schröder et al. [26] for Pr = 530 in qualitative agreement
with experiments [27]. As for the variation of k on Péclet
number, Fig. 9(a) shows that for fixed Ra, k increases for
increasing Pe while the inverse is found in mixed convec-
tion in clear fluids [25–27]. Therefore, it is interesting to
clarify this feature with regard to experimental results, a
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task that will be accomplished in the next section. The per-
iod T of oscillatory pure transverse rolls is plotted in
Fig. 9(b) as a function of Pe for several Rayleigh numbers.
This figure shows that the period T is diverging for Pe ? 0
regardless of Ra, in agreement with the zero frequency at
marginal stability of the classical Horton–Rogers–Lap-
wood convection. Moreover, the period T is also shown
to decrease with increasing Ra for fixed values of Pe and
to decrease with increasing Pe for fixed values of Ra and
eventually equals the period TA at the border between con-
vective and absolute instability (see the inset of Fig. 9(b)).
This is in good qualitative agreement with the results of
two-dimensional numerical simulations of Dufour and
Néel [14]. Finally, we found that the phase velocity Vu is
almost equal to Pe. Once again, this is confirmed quantita-
tively by the result of the numerical simulation of [14].

We conclude this section by recalling that beyond the
absolute instability threshold, the three predicted features
of oscillatory pure transverse rolls, namely the wavelength,
the period of oscillations and the phase velocity are in qual-
itative agreement with the nonlinear numerical results of
[14]. The aim of the next section is to go one step further
by comparing these predictions with results issuing from
experiments.
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6. Comparison with experiments

In early experiments on mixed convection in porous
media (referred as MC throughout this section) conducted
by Combarnous and published in [8–10] the distinction
between convective and absolute instability was not yet
established. Therefore it is a useful task to examine the
MC findings using the concept of absolute instability which
is now widely recognized. We will focus here on the results.
The details on experimental system are given in [10] for
example. In MC experiments an extensive pattern of
thermo-couples was set in the porous medium with a view
to observe the cellular organization of convective move-
ments. The porous media consist of various solid beads
(glass, sand, lead) and fluid (water, oil) depending on the
experimental series. The depth of the porous media is
5.35 cm while their width is 37 cm so as the lateral aspect
ratio of the working volume is a = 6.9. With this lateral
aspect ratio, the predicted value of Reynolds number
at the double bifurcation point is Re�K ¼ F � Pe� ¼
1:19 � 10�3. Table 1 presents the calculated values of
Pe* for the four series presented here, together with differ-
Table 1
Thermo-physical properties for experimental series and corresponding values

Series Solid/liquid U K � 10�8 ks (
m2 W/m

6 Glass/water 0.371 1.147 1.5
7 Glass/oil 0.351 0.228 1.5

11 Glass/water 0.381 0.721 1.5
14 Quartz/water 0.324 0.209 6
ent thermo-physical properties as they have been evaluated
in [8].

Selected results from MC experiments will be presented
in the following to illustrate the flow patterns together with
their characteristics in the laminar mixed convection region
i.e. Ra < 260. The temperature recordings allowed to delin-
eate a flow regime map of various patterns including a con-
ductive state, stationary L rolls, regular and irregular
moving T modes. Figs. 10 and 11 present the experimental
flow regime maps in the (Pe, Ra) plane for different series.
Additionally in Fig. 10 we specify the initial condition for
each run. In all reported experiments, the pattern observed
as a final state of a run of a number n is taken as an initial
condition for the next run n + 1, except for the first moving
T modes (i.e. number 1) which are the consequence of a
conduction state as an initial condition. The missing num-
bers in Fig. 10 correspond to complicated patterns
observed in the fluctuating mixed convection region, not
studied in this work. We inform the reader that these initial
conditions are not specified in [8–10]. We also present
the convective/absolute instability boundaries of T rolls
together with Pe*, the value of Péclet number at the double
bifurcation point (vertical line in Fig. 11). According to the
of Pe*

�10�1) kf (10�1) kstg (�10�1) Pe*

(�C) W/m (�C) W/m (�C)

0.6 0.85 6.95
0.15 1.03 13.27
0.6 0.9 7.68
0.6 4.25 3.29
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discussion of roll pattern selection performed in Section 3,
one should observe the oscillatory three-dimensional pat-
tern when Pe < Pe* and L rolls otherwise. This prediction
stemming from the linear temporal stability analysis does
not agree with experiments as shown in Figs. 10 and 11.
On the other hand, for series 6 and 11, the border between
convective and absolute instability of different oscillatory
modes corresponds perfectly to the observed transition
from either T modes or irregular patterns in turbulent
regime (not shown in Figs. 10 and 11) to L rolls and con-
versely. Indeed, by examining the Fig. 10 we can appreciate
this behavior throughout different scenario:

(i) Raising Pe for a fixed value of Ra: point 34 to point
35.

(ii) Increasing or decreasing Ra in laminar region for
fixed value of Pe: point 17 to point 18 and point 18
to point 19 respectively.

(iii) Decreasing Ra from turbulent region (Ra > 260) for
fixed value of Pe: points 27, 29 and 31 (not shown
in Fig. 10) to points 28, 30 and 32 respectively.

(iv) Decreasing Ra and increasing Pe: point 1 to point 2.

Besides the results mentioned above, the MC experi-
ments revealed the existence of a region associated with
either T modes or L rolls according to the initial conditions
(points 34, 36, 37, 38 and 39 of Fig. 10). We emphasize that
complicated nonlinear effects are behind this pattern selec-
tion. Therefore three-dimensional numerical simulation is
needed to clarify these hysteresis effects. In particular, the
competition between T modes and L rolls is worth examin-
ing in the framework of a model based on coupled ampli-
tude equations. Work in this direction is in progress.
Except in parameter ranges where hysteresis effects are
present, a close inspection of Figs. 10 and 11 points to
the fact that the linear concept of absolute instability pro-
vides the relevant pattern selection and stability criteria.
Nevertheless, problems arise for series 7 and 14 for which
there is no good relation between the transition curve to
the absolute instability and the observed transition between
T modes and L rolls as shown in Fig. 11(b) and (c). We
believe that the key explanation of the difference between
experiment and theory lies in the fact that the matrix used
in series 7 and 14 has a much greater thermal conductivity
than that of the fluid (i.e. kf/ks = 0.1). Therefore, the
assumption of local thermal equilibrium is less satisfactory
and one has to include in the mathematical model the effect
of finite heat transfer coefficient between the two phases
[28,29].

In a recent study of nonlinear dynamics of parallel
wakes, by computing the linear and nonlinear response to
localized perturbations, Chomaz [30] found that nonlinear
effects do not modify some of the instability characteristics.
In particular, he showed that the global frequency is the
absolute frequency determined by linear criteria although
the system is fully nonlinear. From these encouraging
results concerning an example of open flow systems, it is
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interesting to compare the wavelength, the phase velocity
and the period of oscillations predicted by linear theory
of absolute instability to experiments.

The MC experiments exhibit a unique wavelength selec-
tion depending on Ra and Pe numbers. Fig. 12 exemplifies
the spatial distribution of the temperature along the axis of
the medium, i.e. at z = 1/2 and y = a/2, as it has been mea-
sured in [8] for Ra = 72 and Pe = 12.25, after asymptotic
state is reached. From Fig. 12 emerge two significant
points: first, the sinusoidal behavior of the temperature
occurs around an average temperature of 23.5 �C and not
around the temperature of the conduction state
(T0 + T1)/2 = 24.95 �C as it is assumed theoretically (the
discrepancy is of 5.8%); and second the longitudinal aspect
ratio 61 cm/5.35 cm ’ 11.5 is not large enough and allowed
the occurrence of at most six wavelengths. Understanding
the influence of the above-mentioned two points on the
wavelength will help in assessing the agreement between
experimental and theoretical results. In the PRB flows, it
was shown numerically [25,26,31] and experimentally
[26,27] that the wavelength and the propagation speed of
the rolls are strongly dependent on the inlet and the outlet
boundaries as well as on the longitudinal aspect ratio of the
medium. In particular, if instead of imposing the conduc-
tion state at inlet and outlet, and consider phase-pinning
at the boundaries [31] found that the wavelength of T rolls
is not uniform over the length of the box. The same behav-
ior was also experimentally observed in PRB in the case of
a short box [26]. Therefore, if we try to make quantitative
comparison between theory and experiment, we have to
take into account the relatively large uncertainty to mea-
sure both the wavelength and the propagation speed of T

rolls in laboratory experiment. The comparison is achieved
in two ways. Because the measured wavelengths were
obtained for different combinations of Ra and Pe numbers,
we first try to draw a main tendency of the wavelength by
using a least-square approximation. The interpolation of
measured wavelengths k�exp is presented in dimensional
form in Fig. 13 as a function of Ra for series 11, together
with the interpolation of wavelengths of T rolls (m = 0)
or oscillatory three-dimensional structures (m = 6) pre-
dicted by the linear concept of absolute instability. The
wavelength curves of three-dimensional structures with
Fig. 12. Spatial distribution of the recorded temperature along the middle
axis z ¼ 1

2
and y ¼ a

2
[8]. The arrow indicates the through-flow direction.
1 6 m 6 5 lie between the curves presented in Fig. 13. It
is seen that the global tendency of theoretical predictions
of wavelengths for T rolls are lower than that of experi-
ments. On the other hand, it is also seen that the predicted
wavelengths for oscillatory 3D structures compare globally
with experimental results. The second way we adopt for
comparison is to compute wavelength for each combina-
tion of Ra and Pe with m ranging from 0 to 6. Quantitative
comparisons between theory and experiment are displayed
in Table 2 and indicate that the discrepancy lies between
0.5% and 14.5%. There are no fitted parameters in the com-
parison of theory and measurement. In view to check the
predicted Ra and Pe dependence of the wavelength, we
use experimental data given in Table 2:

(i) For Ra = 72, if we increase Pe from 7.23 to 12.25,
k�exp increases then from 8.9 to 10.4 cm.

(ii) For Pe = 11.75, if Ra is raised from 100.93 to 128.54,
k�exp decreases from 7.1 to 6.7 cm.

These behaviors observed in experiments confirm the
predicted results summarized in Fig. 9(a).
Table 2
Comparison between the predicted and the measured dimensional
wavelength k�th and k�exp, for different combinations of Ra and Pe

Pe Ra k�exp (cm) k�th (cm) Discrepancy (%)

2.56 63.95 13.3 11.46 (m = 6) �13.8
7.23 72 8.9 8.8 (m = 2) �1.1

12.25 72 10.4 10.43 (m = 5) �0.2
8.28 74.89 10.8 10.12 (m = 6) �6.3

13.86 76.40 8.4 9.61 (m = 0) 14.4
6.17 89.48 9.2 9.33 (m = 6) 1.4

11.75 100.93 7.1 8.13 (m = 0) 14.5
11.75 128.54 6.7 7.37 (m = 0) 10.
7.83 132.18 9.16 7.93 (m = 6) �13.4
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The temperature recordings in MC experiments allowed
to measure the relative propagation speed of the rolls,
UP/U. This velocity depends both on the porosity U and
the ratio of the heat capacity of the fluid to the heat capacity
of the porous matrix, (qc)f/(qc)s. From experimental data of
series 11 [8–10] found UUP/U = 0.43. In Section 5 we pre-
dicted that the evolution of the dimensionless phase velocity
Vu = xr/k0r is almost equal to Pe. Taking into account the
scaling factors for the time, the space and the filtration
velocity, this yields UUP/U = 1/[1 + (1 � U)(qc)s/U(qc)f].
For the particular case of series 11 with U = 0.381 and
(qc)f/(qc)s = 2.2, this yields UUP/U = 0.57. We claim that
the discrepancy between theory and experiment is due in
part to the uncertainty to measure the wavelength. We
expect that the remainder of the difference is explained by
our idealized model which consider the bounding metal
plates as isothermal. This assumption supposes that the
thermal conductivity of the bounding plates is infinite, a
condition that cannot be completely satisfied in actual
experiments. In the context of Rayleigh–Bénard problem
without shear flow, Carrière et al. [32] examined the impor-
tance of the conductivity of the horizontal boundaries on
the wavelength selection. The results of this investigation
indicate in particular that, as the conductivity of the fluid
exceeds that of the boundary, the critical Rayleigh number
and wave number decrease strongly. The influence of finite
thermal conductivity of the metal plates on wavelength, fre-
quency and phase velocity in our problem requires a further
work. As a consequence of the discrepancy between predic-
tions of the theory and experiments concerning the phase
velocity, our predicted period of oscillations is always less
than the measured one for actual Rayleigh number. Never-
theless, when one limits the comparison to the onset of
absolute instability as shown in Fig. 14, an excellent agree-
ment is found between the measured period of oscillations
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7. Conclusion

In the present paper we investigate the stability of a fluid
in porous media subject simultaneously to an horizontal
through-flow and to a vertical temperature gradient. Spe-
cial emphasis is given to the non-Darcian effects and to
the influence of the lateral aspect ratio of the medium on
the convective or absolute nature of the instability. Major
results obtained in this study can be summarized as
follows:

(1) As far as the perturbation is spatially extended, a
temporal stability analysis indicates that the form of
the instability depends on the lateral aspect ratio a.
For infinite a longitudinal rolls are favored above
any other structures irrespective of the values of Péc-
let number Pe. While with a finite a it is found that
there exists a critical Péclet number Pe* in such a
way that for Pe < Pe* the oscillatory three-dimen-
sional instability becomes unstable first and for
Pe > Pe* the most unstable disturbances are longitu-
dinal rolls. The transition that occurs at Pe* may be
smooth or abrupt depending on the aspect ratio.

(2) This picture changes drastically if, instead of consid-
ering spatially extended perturbations, localized ones
are regarded as it must be the case for open flow sys-
tems. Three-dimensional spatial stability analysis is
performed in this case and reveals that although mov-
ing 3D modes may experience a transition from con-
vective to absolute instability, pure transversal rolls
are the most absolutely unstable modes. We found
that by increasing inertia the transition to the abso-
lute instability is delayed substantially.
Comparison with early experiments [8–10] indicates
that the theoretical transition curve from convective
to absolute instability in the Rayleigh–Péclet number
plane corresponds perfectly to the observed transition
from moving transversal modes to stationary longitu-
dinal rolls and vice versa. Moreover it has also been
found that the measured period of oscillations of
transverse modes are in a very good agreement with
the theoretically predicted ones at the threshold of
absolute instability. These comparisons are less satis-
factory when the beads or matrix are much more con-
ductive than the fluid. Therefore the assumption of
local thermodynamic equilibrium between the two
phases must be reconsidered.

(3) Far from the threshold of absolute instability we
found that the wavelength, uniquely selected in labo-
ratory experiments, agrees globally with our predic-
tions for various Rayleigh and Péclet numbers.
However, we found a discrepancy between the exper-
imental and the theoretical propagation speed of the
rolls. This suggests that an examination of the influ-
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ence of finite thermal conductivity of the bounding
metal plates on the moving transverse rolls is highly
needed.

(4) While for infinite lateral aspect ratio longitudinal
rolls remain convectively unstable whatever the val-
ues of Pe, the main effect of a finite aspect ratio is
to create a region of absolute instability. Because
numerous similarities between mixed convection in
porous media and in clear fluids, we believe that this
new result will encourage future research on the
effects of a finite lateral aspect ratio on the convec-
tive/absolute nature of longitudinal rolls in fluid
media.
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